Main Article Content
Abstract
Objective: To identify the difficulties of intensive care unit (ICU) staff in interpreting renal extracorporeal circuit pressures using photographs
Methodology: Cross-sectional descriptive study conducted in two multi-purpose intensive care units with 20 beds and 82 healthcare professionals (doctors/nurses) during November 2020. Fifteen photographs validated by two experts of the Prismaflex® screen were used, with four response options: line-in problems, line-out problems, coagulation, filter and correct operation. One was correct
Results: A total of 66 professionals participated (80.5% sample). A total of 71.7% (95%CI 68.8-74.4) of the photographs were correctly classified. The mean number of correct answers was 9.9 (SD=2.4).
Photographs interpreted with the greatest difficulty were those of the return line, with a correctness rate of 50%. Trained professionals obtained a mean number of correct answers of 10.8 (SD=2.5) compared to 9.1 (SD=2.1) for untrained professionals (p<0.01).
A positive linear association was established between seniority and number of correct answers (r=0.5, p=0.01). The mean number of correct answers for nurses was 10.1 (SD=2.2), compared to 9.4 (SD=3) for physicians (p=0.4).
Conclusions: A quarter of the photographs were misclassified, especially those concerning venous access. Trained and more experienced professionals have fewer difficulties. While the nurse is in charge of circuit control, there are no differences between physicians and nurses. Especially junior nurses need to be trained to know the haemodynamic of the extracorporeal circuit, thus contributing to improve the effectiveness of the treatment.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Author copyright notice
© Authors grant the publisher the non-exclusive licence to publish the work and consent to its use and distribution under the Creative Commons Attribution - NonCommercial 4.0 International (CC BY-NC 4.0) licence. Read the licensing information and the legal text here. This must be expressly stated wherever necessary.
References
- Karkar A. Continuous renal replacement therapy: Principles, modalities, and prescription. Saudi J Kidney Dis Transpl 2019;30(6):1201-9. DOI: https://doi.org/10.4103/1319-2442.275463
- Tandukar S, Palevsky PM. Continuous Renal Replacement Therapy: Who, When, Why, and How. Chest 2019;155(3):626-38. DOI: https://doi.org/10.1016/j.chest.2018.09.004
- Romero-García M, de la Cueva-Ariza L, Delgado-Hito P. Actualización en técnicas continuas de reemplazo renal. Enferm Intensiva 2013;24(3):113-9. DOI: https://doi.org/10.1016/j.enfi.2013.01.004
- Michel T, Ksouri H, Schneider AG. Continuous renal replacement therapy: understanding circuit hemodynamics to improve therapy adequacy. Curr Opin Crit Care 2018;24(6):455-62. DOI: https://doi.org/10.1097/MCC.0000000000000545
- Sansom B, Sriram S, Presneill J, Bellomo R. Circuit Hemodynamics and Circuit Failure During Continuous Renal Replacement Therapy. Crit Care Med 2019;47(11):e872-e79.
- Valls-Matarín J, Del Cotillo-Fuente M, Pujol-Vila M, Ribal-Prior R, Sandalinas-Mulero I. Diferenciación entre lesiones cutáneas asociadas a la humedad y úlceras por presión mediante el uso de fotografías en un área de críticos. Enferm Clin 2016; 26(5):268-74. DOI: https://doi.org/10.1016/j.enfcli.2016.06.008
- Kummerow Broman K, Gaskill CE, Faqih A, Feng M, Phillips SE, Lober WB, Pierce RA, Holzman MD, Evans HL, Poulose BK. Evaluation of Wound Photography for Remote Postoperative Assessment of Surgical Site Infections. JAMA Surg 2019;154(2):117-24. DOI: https://doi.org/10.1001/jamasurg.2018.3861
- Brain M, Winson E, Roodenburg O, McNeil J. Non anti-coagulant factors associated with filter life in continuous renal replacement therapy (CRRT): a systematic review and meta-analysis. BMC Nephrol 2017;18(1):69. DOI: https://doi.org/10.1186/s12882-017-0445-5
- Sansom B, Sriram S, Presneill J, Bellomo R. Circuit Hemodynamics and Circuit Failure During Continuous Renal Replacement Therapy. Crit Care Med 2019;47(11):e872-e79. DOI: https://doi.org/10.1097/CCM.0000000000003958
- Mottes T, Owens T, Niedner M, Juno J, Shanley TP, Heung M. Improving delivery of continuous renal replacement therapy: impact of a simulation-based educational intervention. Pediatr Crit Care Med 2013;14(8):747-54. DOI: https://doi.org/10.1097/PCC.0b013e318297626e
- Aragó Sorrosal S, Rodas Marín L M, Torres F, Villegas Jiménez V, Poch López de Briñas E. Dos métodos de anticoagulación en técnicas continuas de depuración extrarrenal. Enferm Nefrol [Internet]. 2018 [consultado 09 Ago 2022]; 21(1):9-17. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S2254-28842018000100002&lng=es. DOI: https://doi.org/10.4321/S2254-28842018000100002
- Tsujimoto Y, Miki S, Shimada H, Tsujimoto H, Yasuda H, Kataoka Y, Fujii T. Non-pharmacological interventions for preventing clotting of extracorporeal circuits during continuous renal replacement therapy. Cochrane Database Syst Rev 2021;9(9):CD013330. DOI: https://doi.org/10.1002/14651858.CD013330.pub2
- Lemarie P, Husser Vidal S, Gergaud S, Verger X, Rineau E, Berton J, Parot-Schinkel E, Hamel JF, Lasocki S. High-Fidelity Simulation Nurse Training Reduces Unplanned Interruption of Continuous Renal Replacement Therapy Sessions in Critically Ill Patients: The SimHeR Randomized Controlled Trial. Anesth Analg 2019;129(1):121-8. DOI: https://doi.org/10.1213/ANE.0000000000003581
- Oh HJ, Lee MJ, Kim CH, Kim DY, Lee HS, Park JT, Na S, Han SH, Kang SW, Koh SO, Yoo TH. The benefit of specialized team approaches in patients with acute kidney injury undergoing continuous renal replacement therapy: propensity score matched analysis. Crit Care 2014;18(4):454. DOI: https://doi.org/10.1186/s13054-014-0454-8
- Bennett DV. Outside-the-Box Skills Validation of Competency. J Contin Educ Nurs 2019;50(2):59-60. DOI: https://doi.org/10.3928/00220124-20190115-04
References
Karkar A. Continuous renal replacement therapy: Principles, modalities, and prescription. Saudi J Kidney Dis Transpl 2019;30(6):1201-9. DOI: https://doi.org/10.4103/1319-2442.275463
Tandukar S, Palevsky PM. Continuous Renal Replacement Therapy: Who, When, Why, and How. Chest 2019;155(3):626-38. DOI: https://doi.org/10.1016/j.chest.2018.09.004
Romero-García M, de la Cueva-Ariza L, Delgado-Hito P. Actualización en técnicas continuas de reemplazo renal. Enferm Intensiva 2013;24(3):113-9. DOI: https://doi.org/10.1016/j.enfi.2013.01.004
Michel T, Ksouri H, Schneider AG. Continuous renal replacement therapy: understanding circuit hemodynamics to improve therapy adequacy. Curr Opin Crit Care 2018;24(6):455-62. DOI: https://doi.org/10.1097/MCC.0000000000000545
Sansom B, Sriram S, Presneill J, Bellomo R. Circuit Hemodynamics and Circuit Failure During Continuous Renal Replacement Therapy. Crit Care Med 2019;47(11):e872-e79.
Valls-Matarín J, Del Cotillo-Fuente M, Pujol-Vila M, Ribal-Prior R, Sandalinas-Mulero I. Diferenciación entre lesiones cutáneas asociadas a la humedad y úlceras por presión mediante el uso de fotografías en un área de críticos. Enferm Clin 2016; 26(5):268-74. DOI: https://doi.org/10.1016/j.enfcli.2016.06.008
Kummerow Broman K, Gaskill CE, Faqih A, Feng M, Phillips SE, Lober WB, Pierce RA, Holzman MD, Evans HL, Poulose BK. Evaluation of Wound Photography for Remote Postoperative Assessment of Surgical Site Infections. JAMA Surg 2019;154(2):117-24. DOI: https://doi.org/10.1001/jamasurg.2018.3861
Brain M, Winson E, Roodenburg O, McNeil J. Non anti-coagulant factors associated with filter life in continuous renal replacement therapy (CRRT): a systematic review and meta-analysis. BMC Nephrol 2017;18(1):69. DOI: https://doi.org/10.1186/s12882-017-0445-5
Sansom B, Sriram S, Presneill J, Bellomo R. Circuit Hemodynamics and Circuit Failure During Continuous Renal Replacement Therapy. Crit Care Med 2019;47(11):e872-e79. DOI: https://doi.org/10.1097/CCM.0000000000003958
Mottes T, Owens T, Niedner M, Juno J, Shanley TP, Heung M. Improving delivery of continuous renal replacement therapy: impact of a simulation-based educational intervention. Pediatr Crit Care Med 2013;14(8):747-54. DOI: https://doi.org/10.1097/PCC.0b013e318297626e
Aragó Sorrosal S, Rodas Marín L M, Torres F, Villegas Jiménez V, Poch López de Briñas E. Dos métodos de anticoagulación en técnicas continuas de depuración extrarrenal. Enferm Nefrol [Internet]. 2018 [consultado 09 Ago 2022]; 21(1):9-17. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S2254-28842018000100002&lng=es. DOI: https://doi.org/10.4321/S2254-28842018000100002
Tsujimoto Y, Miki S, Shimada H, Tsujimoto H, Yasuda H, Kataoka Y, Fujii T. Non-pharmacological interventions for preventing clotting of extracorporeal circuits during continuous renal replacement therapy. Cochrane Database Syst Rev 2021;9(9):CD013330. DOI: https://doi.org/10.1002/14651858.CD013330.pub2
Lemarie P, Husser Vidal S, Gergaud S, Verger X, Rineau E, Berton J, Parot-Schinkel E, Hamel JF, Lasocki S. High-Fidelity Simulation Nurse Training Reduces Unplanned Interruption of Continuous Renal Replacement Therapy Sessions in Critically Ill Patients: The SimHeR Randomized Controlled Trial. Anesth Analg 2019;129(1):121-8. DOI: https://doi.org/10.1213/ANE.0000000000003581
Oh HJ, Lee MJ, Kim CH, Kim DY, Lee HS, Park JT, Na S, Han SH, Kang SW, Koh SO, Yoo TH. The benefit of specialized team approaches in patients with acute kidney injury undergoing continuous renal replacement therapy: propensity score matched analysis. Crit Care 2014;18(4):454. DOI: https://doi.org/10.1186/s13054-014-0454-8
Bennett DV. Outside-the-Box Skills Validation of Competency. J Contin Educ Nurs 2019;50(2):59-60. DOI: https://doi.org/10.3928/00220124-20190115-04