Contenido del artículo principal

Resumen

Introducción: La introducción de la inteligencia artificial, en el área de la nefrología, proporciona una nueva perspectiva para analizar datos en tiempo real mediados por tecnología.
Objetivos: Determinar las aplicaciones de la inteligencia artificial en la práctica de la enfermería nefrológica y caracterizar herramientas predictivas, diagnósticas y de gestión clínica dirigidas a pacientes con enfermedad renal.
Metodología: Se realizó una revisión integrativa de literatura siguiendo la declaración PRISMA. Se buscaron artículos originales sin límite temporal en MEDLINE, EBSCO, Cochrane y LILACS, usando combinaciones de términos relacionados con inteligencia artificial, enfermería y nefrología. Se incluyeron estudios observacionales, experimentales y ensayos clínicos en población adulta, publicados en inglés, español o portugués. Se excluyeron desarrollos robóticos, pacientes gineco-obstétricas y revisiones previas. Dos revisores extrajeron de forma independiente datos sobre diseño, muestra, intervenciones, comparadores y resultados principales, aplicando guías CASPe para evaluar la calidad metodológica.
Resultados: De 279 registros iniciales, 30 estudios cumplieron los criterios de inclusión. Se agruparon en dos categorías: 16 trabajos en herramientas predictivas y diagnósticas, y 14 en mejora de atención y gestión clínica (sistemas de clasificación de pacientes, alertas tempranas, optimización de diálisis y prevención de readmisiones). La mayoría mostró superioridad de modelos de aprendizaje automático y deep learning frente a enfoques tradicionales.
Conclusiones: La inteligencia artificial aplicada en enfermería nefrológica demuestra un rendimiento prometedor en predicción y diagnóstico, así como en la optimización de procesos asistenciales. Se requieren estudios de implementación clínica y evaluaciones costo-efectivas para consolidar su integración en la práctica diaria y maximizar sus beneficios.

Palabras clave

inteligencia artificial aprendizaje automático enfermedades renales enfermería nefrológica sistemas de apoyo a la decisión clínica computarizados revisión de literatura

Detalles del artículo

Cómo citar
1.
Cuacialpud Marín KS, Serna Yepez S, Rodríguez Triviño CY. Aplicaciones de la inteligencia artificial en la enfermería nefrológica: revisión integrativa de las herramientas predictivas y de gestión clínica. Enferm Nefrol [Internet]. 2025 [consultado 1 Oct 2025];28(3):[aprox. 15 p.]. Disponible en: https://www.enfermerianefrologica.com/revista/article/view/4818

Referencias

  1. Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017;69S:S36-S40. https://doi.org/10.1016/j.metabol.2017.01.011
  2. Chen M, Decary M. Artificial intelligence in healthcare: An essential guide for health leaders. Healthc Manage Forum. 2020;33(1):10-8. https://doi.org/10.1177/0840470419873123
  3. Martínez García DN, Dalgo Flores VM, Herrera López JL, Analuisa Jiménez EI, Velasco Acurio EF. Avances de la inteligencia artificial en salud. Dominio Las Cienc. 2019;5(3):603-13.
  4. Bharati J, Jha V, Levin A. The Global Kidney Health Atlas: Burden and Opportunities to Improve Kidney Health Worldwide. Ann Nutr Metab. 2020;76 Suppl 1:25-30.
  5. Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2020;395(10225):709-33. https://doi.org/10.1016/S0140-6736(20)30045-3
  6. Liao PH, Hsu PT, Chu W, Chu WC. Applying artificial intelligence technology to support decision-making in nursing: A case study in Taiwan. Health Informatics J. 2015;21(2):137-48. https://doi.org/10.1177/1460458213509806
  7. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Published online March 29, 2021. https://doi.org/10.1136/bmj.n71
  8. Flechet M, Falini S, Bonetti C, et al. Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor. Crit Care Lond Engl. 2019;23(1):282. https://doi.org/10.1186/s13054-019-2563-x
  9. Martinez DA, Levin SR, Klein EY, et al. Early Prediction of Acute Kidney Injury in the Emergency Department With Machine-Learning Methods Applied to Electronic Health Record Data. Ann Emerg Med. 2020;76(4):501-14.
  10. https://doi.org/10.1016/j.annemergmed.2020.05.026
  11. Ozrazgat-Baslanti T, Loftus TJ, Ren Y, Ruppert MM, Bihorac A. Advances in artificial intelligence and deep learning systems in ICU-related acute kidney injury. Curr Opin Crit Care. 2021;27(6):560-72. https://doi.org/10.1097/MCC.0000000000000887
  12. Chaudhuri S, Long A, Zhang H, et al. Artificial intelligence enabled applications in kidney disease. Semin Dial. 2021;34(1):5-16. https://doi.org/10.1111/sdi.12915
  13. Wu X, Yuan X, Wang W, et al. Value of a Machine Learning Approach for Predicting Clinical Outcomes in Young Patients With Hypertension. Hypertens Dallas Tex 1979. 2020;75(5):1271-8. https://doi.org/10.1161/HYPERTENSIONAHA.119.13404
  14. Roth JA, Radevski G, Marzolini C, et al. Cohort-Derived Machine Learning Models for Individual Prediction of Chronic Kidney Disease in People Living With Human Immunodeficiency Virus: A Prospective Multicenter Cohort Study. J Infect Dis. 2021;224(7):1198-208. https://doi.org/10.1093/infdis/jiaa236
  15. Jacob AN, Khuder S, Malhotra N, et al. Neural network analysis to predict mortality in end-stage renal disease: application to United States Renal Data System. Nephron Clin Pract. 2010;116(2):c148-58. https://doi.org/10.1159/000315884
  16. Xi IL, Zhao Y, Wang R, et al. Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging. Clin Cancer Res Off J Am Assoc Cancer Res. 2020;26(8):1944-52. https://doi.org/10.1158/1078-0432.CCR-19-0374
  17. Byun SS, Heo TS, Choi JM, et al. Deep learning based prediction of prognosis in nonmetastatic clear cell renal cell carcinoma. Sci Rep. 2021;11(1):1242. https://doi.org/10.1038/s41598-020-80262-9
  18. Purkayastha S, Zhao Y, Wu J, et al. Differentiation of low and high grade renal cell carcinoma on routine MRI with an externally validated automatic machine learning algorithm. Sci Rep. 2020;10(1):19503. https://doi.org/10.1038/s41598-020-76132-z
  19. Toda N, Hashimoto M, Arita Y, et al. Deep Learning Algorithm for Fully Automated Detection of Small (≤4 cm) Renal Cell Carcinoma in Contrast-Enhanced Computed Tomography Using a Multicenter Database. Invest Radiol. 2022;57(5):327-33. https://doi.org/10.1097/RLI.0000000000000842
  20. Raynaud M, Aubert O, Divard G, et al. Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study. Lancet Digit Health. 2021;3(12):e795-e805. https://doi.org/10.1016/S2589-7500(21)00209-0
  21. Tangri N, Ansell D, Naimark D. Determining factors that predict technique survival on peritoneal dialysis: application of regression and artificial neural network methods. Nephron Clin Pract. 2011;118(2):c93-c100. https://doi.org/10.1159/000319988
  22. Hong L, Cheng X, Zheng D. Application of Artificial Intelligence in Emergency Nursing of Patients with Chronic Obstructive Pulmonary Disease. Contrast Media Mol Imaging. 2021;2021:6423398. https://doi.org/10.1155/2021/6423398
  23. 22. Zhao C, Shi Q, Ma F, Yu J, Zhao A. Intelligent Algorithm-Based Ultrasound Image for Evaluating the Effect of Comprehensive Nursing Scheme on Patients with Diabetic Kidney Disease. Comput Math Methods Med. 2022;2022:6440138. https://doi.org/10.1155/2022/6440138
  24. Barrera A, Gee C, Wood A, Gibson O, Bayley D, Geddes J. Introducing artificial intelligence in acute psychiatric inpatient care: qualitative study of its use to conduct nursing observations. Evid Based Ment Health. 2020;23(1):34-8. https://doi.org/10.1136/ebmental-2019-300136
  25. An R, Chang GM, Fan YY, Ji LL, Wang XH, Hong S. Machine learning-based patient classification system for adult patients in intensive care units: A cross-sectional study. J Nurs Manag. 2021;29(6):1752-62. https://doi.org/10.1111/jonm.13284
  26. Du Q, Liang D, Zhang L, Chen G, Li X. Evaluation of Functional Magnetic Resonance Imaging under Artificial Intelligence Algorithm on Plan-Do-Check-Action Home Nursing for Patients with Diabetic Nephropathy. Contrast Media Mol Imaging. 2022;2022:9882532. https://doi.org/10.1155/2022/9882532https://doi.org/10.1159/000515329
  27. Brom H, Brooks Carthon JM, Ikeaba U, Chittams J. Leveraging Electronic Health Records and Machine Learning to Tailor Nursing Care for Patients at High Risk for Readmissions. J Nurs Care Qual. 2020;35(1):27-33. https://doi.org/10.1097/NCQ.0000000000000412
  28. Bagnasco A, Siri A, Aleo G, Rocco G, Sasso L. Applying artificial neural networks to predict communication risks in the emergency department. J Adv Nurs. 2015;71(10):2293-304. https://doi.org/10.1111/jan.12691
  29. Azar AT, Wahba KM. Artificial neural network for prediction of equilibrated dialysis dose without intradialytic sample. Saudi J Kidney Dis Transplant Off Publ Saudi Cent Organ Transplant Saudi Arab. 2011;22(4):705-11.
  30. Chan L, Nadkarni GN, Fleming F, et al. Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease. Diabetologia. 2021;64(7):1504-15. https://doi.org/10.1007/s00125-021-05444-0
  31. De Gonzalo-Calvo D, Martínez-Camblor P, Bär C, et al. Improved cardiovascular risk prediction in patients with end-stage renal disease on hemodialysis using machine learning modeling and circulating microribonucleic acids. Theranostics. 2020;10(19):8665-76. https://doi.org/10.7150/thno.46123
  32. Barbieri C, Molina M, Ponce P, et al. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients. Kidney Int. 2016;90(2):422-9. https://doi.org/10.1016/j.kint.2016.03.036
  33. Chen X, Huang X, Yin M. Implementation of Hospital-to-Home Model for Nutritional Nursing Management of Patients with Chronic Kidney Disease Using Artificial Intelligence Algorithm Combined with CT Internet. Contrast Media Mol Imaging. 2022;2022:1183988. https://doi.org/10.1155/2022/1183988
  34. Yin P, Wang H. Evaluation of Nursing Effect of Pelvic Floor Rehabilitation Training on Pelvic Organ Prolapse in Postpartum Pregnant Women under Ultrasound Imaging with Artificial Intelligence Algorithm. Comput Math Methods Med. 2022;2022:1786994. https://doi.org/10.1155/2022/1786994
  35. Churpek MM, Carey KA, Edelson DP, et al. Internal and External Validation of a Machine Learning Risk Score for Acute Kidney Injury. JAMA Netw Open. 2020;3(8):e2012892. https://doi.org/10.1001/jamanetworkopen.2020.12892
  36. Roblot V, Giret Y, Mezghani S, et al. Validation of a deep learning segmentation algorithm to quantify the skeletal muscle index and sarcopenia in metastatic renal carcinoma. Eur Radiol. 2022;32(7):4728-37. https://doi.org/10.1007/s00330-022-08579-9
  37. Xiao J, Ding R, Xu X, et al. Comparison and development of machine learning tools in the prediction of chronic kidney disease progression. J Transl Med. 2019;17(1):119. https://doi.org/10.1186/s12967-019-1860-0
  38. Liu Y, Tang S. Artificial Intelligence Algorithm-Based Computed Tomography Image of Both Kidneys in Diagnosis of Renal Dysplasia. Comput Math Methods Med. 2022;2022:5823720. https://doi.org/10.1155/2022/5823720
  39. Barbieri C, Mari F, Stopper A, et al. A new machine learning approach for predicting the response to anemia treatment in a large cohort of End Stage Renal Disease patients undergoing dialysis. Comput Biol Med. 2015;61:56-61. http://doi.org/:10.1016/j.compbiomed.
  40. 2015.03.019
  41. Smith BP, Ward RA, Brier ME. Prediction of anticoagulation during hemodialysis by population kinetics and an artificial neural network. Artif Organs. 1998;22(9):731-9. http://doi.org/10.1046/j.1525-1594.1998.06101.x

Artículos similares

<< < 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.